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The standard two-dimensional uniformly driven diffusive model is simulated 
extensively for much larger systems with a multi-spin coding technique. The 
nonequilibrium phase transition is analyzed with anisotropic finite-size scaling 
both at the critical point and off the critical point. The field-theoretic values of 
critical exponents fit the data well at and above 7",.. Below T,. the scaling is 
rather difficult and the results are not conclusive. 

KEY W O R D S :  Driven diffusive systems; anisotropic finite-size scaling; non- 
equilibrium phase transitions; computer simulations. 

1. INTRODUCTION 

Driven diffusive systems are a class of  models  which exhibit  nonequi l ibr ium 
phase transi t ions,  c~-4) (see refs. 4 for reviews). The  models  are defined by 
some local rules which do  not  satisfy detai led balance. The s teady states of  
the dynamica l  evolut ion have been studied extensively dur ing the past  
decade. A central  issue is the extent to which the concept  of  universali ty of  
critical phenomena  can be appl ied in nonequi l ibr ium cases. 

The  s tandard  driven diffusive model  of  half-filled charged lattice gas 
was p roposed  as a model  for an ionic solut ion in an electric field, ct'2} 
A con t inuum version, based on symmetries  and conservat ion laws, was 
solved in a field-theoretic framework,  c5" 6) It is quite remarkable  that  exact 
critical exponents  are obta ined  for dimensions from two to five. In par-  
ticular,  the se~ of critical exponents  in two dimensions is 

fl = 1/2, y = 1, vii = 3/2, v• = 1/2 ( 1 ) 
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These exponents have a similar meaning as in equilibrium second-order 
phase transitions. They are thought to be universal within the class. Note 
that vii :~ v• This implies an intrinsic anisotropy in the system which 
cannot be scaled away. 

Computer simulations (7-' ~ have been applied to the problem to check 
the validity of the results. Anisotropic finite-size scaling studies by 
Leung(8.91 appear to have settled a dispute between theory and early com- 
puter simulations. But recent work by Achahbar et alJ ~~ 1,~ casts doubt on 
Leung's conclusion. We made an extensive simulation study of the model, 
and the results are largely consistent with Leung's findings. The high- 
precision data presented here support the anisotropic finite-size scaling 
theory with the set of exponents (1) at and above T,.. However, the inter- 
pretation of the data below Tc is difficult. 

2. M O D E L  A N D  S I M U L A T I O N  

Our system consists of a square lattice of L x M sites. The driven field 
is in the x direction. A configuration is a set of Ising spins, a.,.,.,, = +_ 1, 
located at each site, with zero total magnetization. Equivalently, the system 
can also be viewed as a half-filled lattice gas, with a,.,:, = 1 corresponding 
to an occupied site and - 1  an empty site. The state evolves according to 
the following prescription. A bond is chosen with equal probability in 
orientations and in locations. If the bond is parallel to the driven field 
and the adjoining spins are distinct, the spins are set to a,. .r= - 1  and 
a.,.+,modL, y =  + I. This corresponds to an infinitely strong driven field. If 
the bond is perpendicular to the field, we swap the spin values with the 
Metropolis probability min{1, e x p ( - 6 E / k B T ) } ,  where 6E is the energy 
increment due to the change, assuming the usual nearest neighbour 
ferromagnetic interaction with coupling constant J and periodic boundary 
conditions. One Monte Carlo step is defined as L x M such basic steps. 

Simulation near the critical point is notoriously difficult because of 
critical slowing down. The situation for this model is more severe due to 
the conservative nature of the dynamics, leading to relaxation time rocM 4. 
Thus, an efficient implementation is crucial to obtaining good statistics. We 
used a multi-spin coding method, (la' 13~ by which 32 systems are simulated 
simultaneously on 32-bit computers. This appears to be the method of 
choice without changing the definition of the model. It gives us at least a 
factor of 20 speedup over a straightforward program. A slight penalty of 
the multi-spin coding algorithm is that the temperature cannot be set 
exactly to a given value. But it can be well under control with a large 
random bit table. To achieve an accuracy of five significant figures in tem- 
perature, we took a random bit table of 2 ~s entries. 



2D Driven Diffusive System 1411 

The program runs at 0.3 p sec per spin exchange on an SGI Indigo 
Workstation. Computations were done on a cluster of fifty workstations 
(SGI Indigo, HP 9000/700 model 712, and DEC 5000) over several 
months. The lengths of the runs are mostly 107-108 Monte Carlo steps. 
These are orders of magnitude longer than in previous studies. The systems 
are started from a completely ordered state (a strip along the x direction), 
and a large number of Monte Carlo steps is discarded for equilibration. 
Over 70 different systems are simulated, from system size 4 x 4  to 
1024 x 128. Measurements are performed at an interval of l0 Monte Carlo 
steps. We use the order parameter introduced by Wang et al. 1'4~ and 
modified by Leung/s~ Let us define 

~ =  sin Y'. .,.y - [ (2) 
.x '=0 , = 0  

The normalization is such that $ = 1 for a strip geometry (the configuration 
in the limit T--+ 0). The following quantities are calculated: (a) the order 
parameter ~ =  ( $ ) ,  (b) the "susceptibility," or fluctuation of the order 
parameter, 

L 
- -  [ ( ~ 2 )  - (t~)-~] (3) 

Z sin(K/M) 

and the "susceptibility" above the critical temperature, 

L 
Z' _ _  (~2) (4) 

sin(~/M) 

and (c) the fourth-order cumulant, 

g = 2  (~4 )  (~_~)_, (5) 

Note that g goes from 0 to 1 as temperature T goes from oo to O. We 
measure temperature in units of the two-dimensional Ising critical tem- 
perature (2 .269J/ks ) .  

Local quantities like pair-correlation functions are rather difficult to 
analyze. In addition, much more data need to be handled. We prefer to 
work on a sm~ll data set (~,  X, g) for each temperature. 

3. D E T E R M I N A T I O N  OF T H E  C R I T I C A L  T E M P E R A T U R E  

Estimating the critical exponents depends crucially on an accurate 
value of the critical temperature. In the literature different authors have 
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Fig. 1. The susceptibility X vs. temperture T, for system sizes [Monte Carlo steps] of 16 x 16 
[4 x 108] (circles), 128 x 32 [5 x 108] (squares), and 1024 x 64 [2.7 x l0 T] (triangles). 

given incompa t ib l e  values: T c = 1.355 + 0.003 (Vall6s and  Marrot71), 
Tc ~ 1.38 (Achahba r  et al., ~t~) an d  T o =  1.418 + 0 . 0 0 5  (LeungtS~). The  dis- 
crepancies  are the mani fes ta t ion  of  the difficulties of  s imula t ing  the system 
and  of in te rpre t ing  the compl ica ted  finite-size data.  

Ideally,  Tc should  be de te rmined  i n d e p e n d e n t  of  the a s s u m p t i o n  of  
critical exponents .  This  is no t  a lways possible. The  me thods  used in this 
sect ion are fairly s t anda rd  a n d  robust .  Firs t ,  we look  at  the peak  of  the 
susceptibi l i ty X- F igure  1 is a typical  plot  for X for a set o f  systems wi th  

Table 1. Locations of the Peaks To(L, M) in the Susceptibilities of 
Various System Sizes 

L\M 4 8 16 32 64 128 256 

4 1.20 1.5 1.30 1.11 
8 0.79 1.29 1.31 1.21 1.1 1.05 

16 1.19 1.333 1.30 1.23 1.18 
32 1.1 1.34 1.347 1.31 1.26 
64 1.05 1.325 1.365 1.36 1.33 

128 1.31 1.380 1.38 1.374 
256 1.29 1.385 1.395 1.39 
512 1.267 1.379 1.399 1.397 

1024 1.374 1.400 1.40 
2048 1.400 

1.37 
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fixed S =L~/3/M. The accuracy of the peak locations depends on the 
accuracy of the susceptibility data and the spacing of the data points. In 
this calculation, the largest relative errors in susceptibility are about 10% 
and the spacings in T are 0.01 or 0.005. The locations of the peaks are 
robust, even though the susceptibility data have larger errors. The peak 
locations To(L, M) are obtained by fitting the data near the peak to a 
parabola. Table I lists the values for a variety of geometries simulated. 

The general picture of the finite-size critical temperature To(L, M) is as 
follows. For very elongated shapes (when L--+ oo keeping M fixed or vice 
versa), T,.(L, M) decreases toward zero, since the systems in this limit are 
quasi-one-dimensional. For a fixed value M, To(L, M) reaches its maxi- 
mum at about S =  L1/3/M~0.2, which we interpret as indicating that the 
systems with S ~ 0.2 notice the finiteness of the sizes in two directions at 
roughly the same temperature. When L is fixed, the maxima do not coin- 
cide with the former, and appear at about L~/2/M~ 0.25. We do not under- 
stand the reason for this discrepancy. In any case, the data indicate a large 
anisotropy in the system. T,.(L, M) increases as system size increases with 
fixed S. 

It appears reasonable to assume that the limit value Tc is approached 
from below. Then, each of the finite system values should be a lower bound 
for To. That is, we expect T~ > 1.40. Thus, an estimate like Tc ~ 1.355 or 
1.38 is too low, and is due to the small system sizes used. 

If the system is intrinsically anisotropic, in the sense vfl q: v• scaling 
functions cannot be expressed in terms of a single scaling variable. A shape 
factor S=L'• enters in addition to the usual scaling variable 
Lt/Vll(T - T~)/T~. There is an excellent example of this behaviour of a 
model with an exact solution. <~5~ Thus, shape as well as size are important 
in anisotropic systems. This point is also raised by Leung and Zia, who 
criticized analysis based on a square geometry. (~6~ Binder and Wang 
elaborated on phenomenological anisotropic finite-size scaling theories. (17~ 
Following these ideas, the anisotropic system has a one-variable scaling 
form like the isotropic one if we fix the ratio S. 

We analyzed the data according to the anisotropic finite-size scaling 
assumption, 

T~(L, M)=  T,.+ F(S) L -l/vii (6) 

Figure 2 is a plvt of the peak locations T,.(L, M) v e r s u s  L -2/3 for S ~ 0.0625, 
0.0787, 0.157, and 0.198. The data follow this equation reasonably well. 

In Fig. 3 we plot the extrapolated T,. as a function of the ratio S. The 
T~ values based on the assumption v• = vii = 1 are also plotted. In this 
case, we see that the extrapolated values for T~ increase as the aspect ratio 
L/M increases. This general feature is insensitive to the value, of v• used. 



1414 Wang 

1.40 �9 

1.35 

I-~ 1.30 

1.25 

1 i i i I i 

"200.0 0.1 0.2 

L-~ 
Fig. 2. The locations of the susceptibility peaks plotted against L -2/3, for systems with S = 
0.0625 (diamonds, 8x32,  64 x 64, and 512x 128), S =  0.0787 (triangles, 16 x 32, 128 x 64, and 
1024x128), S~0.157 (squares, 16x16, 128x32, and 1024x64), and S=0.198 (circles, 
32 x 16, 256 x 32, and 2048 x 64). 

Note that in the scaling region, we would expect that the systems with fixed 
aspect ratio should approach the same T,. as the system size approaches 
infinity, independent of the shape of the system. This is clearly not the case 
when v• = vii is assumed. Note also that since the system is anisotropic 
(even if v• = vii, the amplitudes can differ), the square systems do not have 
special status. The extrapolated T c values with v• = vii~3 = 1/2 also have 
nontrivial dependence on S, but the variations are much smaller. Varying 
v• gives qualitatively different curves for Tc vs. S. This indicates that 
v• = 1/2 is the correct exponent. Other ratios vii~v• or 4 do not seem 
to fit the data well. Thus, Eq. (6) is a good description for the size 
dependence of the peaks with the set of field-theoretic values. We quote the 
following value as our final estimate: 

Tc = 1.408 _ 0.004 (7) 

The error given is somewhat objective because of various unknown 
systematic errors. This result marginally agrees with Leung's result3 8"9) 
Some of the previous analyses (7' ~0) have been based on square systems and 
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Fig. 3. Extrapolated T,. according to Eq. (6), using the two largest sizes for each S. Circles 
a ssume v• = i,11/3 = 112, upper  scale; squares  for v• = vii = 1, lower scale. 

vt/vil ~ 1. If v •  1/2 and v11=3/2, the square systems will be more like 
one-dimensional systems, and perhaps finite-size To(L, L) converges very 
slowly to Tc or not all. This may explain why the previous calculations on 
square systems all gave a lower T~. If anisotropy is a dominant feature, we 
should not expect peak locations to scale simply as L -~/'" for square 
systems. 

The peaks were not located with great precision, because the simula- 
tions were carried out at discrete points. The second standard method 
exploits the scaling properties of the fourth-order cumulant. From finite- 
size scaling theory, we have 

g( T, L, M)=g(L' /V"(T - Tc)/T~, S) (8) 

If scaling were exactly obeyed, different curves (with fixed S) should inter- 
sect at exactly the same value T C. Therefore, there is no need to extrapolate 
to infinite size. In practice there are unknown corrections to scaling. 
Table II  lists the intersection values. The entry at (L, M) is the intersection 
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Intersection Value T of the g Functions Between the Systems 
L •  a n d L / S x M / 2  

L\M 16 32 64 128 

32 1.291 1.365 1.380 
64 1.343 1.389 1.400 

128 1.393 1.409 
256 1.392 1.406 
512 1.392 1.403 

1024 1.404 
2048 1.402 

1.414 
1.409 
1.408 
1.415 

value for T between system L x M and L/8 x M/2 for the g functions. 
Table  I I I  is similar, but  assuming v• = v,; so it gives the intersection value 
between system L x M and L/2 x M/2. 

Assuming a fixed S, we see in Table II  that  the es t imated Tc does not  
depend on L very much. But it slightly increases with M, perhaps  due to 
the influence of the interfaces. If  Eq. (8) were exactly obeyed, the intersec- 
t ion temperatures  should be independent  of  L and M. The intersections are 
consistent with the values from the peak  locations.  On the other  hand,  for 
scaling with fixed aspect  ratio,  both  L and M dependencies  are seen. The 
trend that  a larger aspect rat io has a higher  intersection value is the same 
as the peak est imates when v t l=  v• is assumed. This s t rong size dependence 
tells us that  analysis based on fixed L/M is not  appropr ia te .  

We also consider  the overall  scaling, Eq. (8). The value of  Tc for each 
S can be determined more  precisely. However,  there are weak size and S 
dependencies.  Nevertheless,  we found that  the values all fall in the interval 
1.395 to 1.410. Figure 4 is one of  the scaling plots  with S = 2  -8/3. It is 
obvious that  Tc = 1.408 is not  the opt imal  tempera ture  to use for this set 

Table III. intersection Value 7" of the g Functions Between the Systems 
L •  a n d L / 2 •  

L\M 16 32 64 128 256 

16 1.402 1.293 1.256 
32 1.520 1.372 1.332 
64 1.572 1.410 1.371 

128 1.434 1.392 
256 1.408 
512 1.414 

1024 1.414 
2048 1.409 

1.379 
1.388 
1.407 
1.43 

1.38 
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Fig. 4. The fourth-order cumulant g against scaling variable L213(T-T,.)/T,.; here 
Tr 1.408. The system sizes are 16 x 16 (circles), 128 x 32 (squares), and 1024 x 64 (triangles). 

of data. The value 1.405 will bring a better overlap between the systems 
M = 32 and M - - 6 4 .  Due to corrections to scaling, we cannot find a T so 
that the three curves coincide. In view of  the poor  scaling behavior (see 
also Fig. 8 for the fourth-order cumulant at To) and the fact that smaller 
systems give systematically a lower effective Tc from this sort of  analysis, 
we feel that  the estimate Tc ~ 1.408 is still consistent with the scaling result 
o fg .  

4. A N I S O T R O P I C  F I N I T E - S I Z E  S C A L I N G  AT  THE  
C R I T I C A L  P O I N T  

In applying the finite-size scaling theory, we could simulate a very 
large system and study the size effect of  smaller subsystems. This may seem 
computationally effective. But there are two problems associated with it: we 
have the annoying finite-size effect of the very large system when the sub- 
system sizes are comparable to it; and we may not be able to equilibrate 
the very large system very well. So, we adopt  the more conventional finite- 
size scaling analysis--working on fully finite-size rectangles of  dimension 
L x M .  
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The exponent ratio vtt/v • is one of the most important numbers in an 
anisotropic finite-size analysis. The theoretical result is often assumed/s' Is) 
We have attempted to determine it numerically. The strip geometries with 
S ~ 0 or S--* oo and periodic boundary conditions have simpler scaling 
behaviours at the critical temperature, "7) 

ttl(Tc) oc Mr/2~• z(Tc)w_M m• L>> M "ll/~l (9) 

~[-t(Tc)ocLyl2"ll-112M-I/2, z(Tc) ocL~'lvll, M>> L ~'/~" (10) 

The value T,. = 1.41 is used throughout in this section, since data were 
computed at this temperature as well as at 1.40 and 1.42. This value 
appears slightly higher than the actual critical temperature. But the dif- 
ference between 1.41 and the more precise value 1.408 should be very small. 
Figure 5 shows the long-strip limiting behaviour for the order parameter. 
The slopes are 7~(2v j_) and 7~(2vii), respectively. The large-L limit is easily 
achieved, obtaining 7/(2v• +0.03, in accordance with theory. The 
other limit is hard to reach, because of the slow relaxation in the transverse 
direction. In any case, we found 7/(2vlr)=0.37 +0.04. We do not think the 
crossing of the two straight lines at L = M = 16 has any significance. This 
sort of strip-geometry scaling cannot determine the ratio vlt/v, accurately. 

100 

_ J  

Fig. 5. 

10 

1 , , , , , , , i . . . . . . .  

10 100 
L o r M  

Order parameter of very long strips at T,. = 1.41. Circles are for L = 1024 and squares 
are for M = 1024. The straight lines have slopes 1 and 1/3, respectively. 
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The order parameter or susceptibility at T c has an extra factor which 
depends on the ratio S. e.g., 

~( T,,, L, M ) = M  -pIll ~(L"• (11) 

Moreover, the scaling function obeys ~(S)--*S l/2-p/'• for S ~ 0  and 
~(S)--* S -vll/Izvl) for S--* oo, as a consequence of the limiting behaviours 
for very long strips [Eq. (9) and (10)] and the hyperscaling relation 

2 f l + y = v •  +vii (12) 

The scaling form was tested for the Ising model, t 17, 19) Previous applications 
to anisotropic systems were not very successful, tl~ t4~ Figure 6 is a scaling 
plot with theoretical values of exponents and Tc = 1.41. Similar plots for 
T =  1.40 and 1.42 show definite deviations from scaling. This supports our 
choice of T,.. The asymptotic slopes for small and large scaling variable S 
are expected to be - 1 / 2  and -3 /2 ,  respectively. Least-squares fits give 
-0 .50+0 .02  and - 1 . 4 9 + 0 . 0 2  for small and large S, respectively. This 

10 2 

10 ~ 

10 o 

. . . . . . . .  i . . . . . . . .  i . . . . . . . .  i . . . . . . .  

10 ̀3 " 10 .2 0 "I 10 ~ 10 ~ 

L~ll/M 

Fig. 6. Scaling plot of the order parameter at the critical point, T,. = 1.41. Each set of data 
has a fixed M value, M = 4  (solid circles), M =  8 (open squares), M =  16 (diamonds), M =  32 
(pluses), M = 6 4  (open circles), M = 1 2 8  (squares), M = 2 5 6  (open triangles), M = 5 1 2  
(crosses), and M =  1024 (up triangles). 
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implies fl/VL = 1.00_____0.02 and vii~v• =2.98_+0.04, in excellent agreement  
with (1). 

Can we obtain good scaling plot if we assume vMi/Vz = 1 and some 
choice of f l /vl? With the large set of  data  for various L and M, we can 
confidently rule out such a possibility. 

In Fig. 7 we plot similarly the susceptibility at T,. = 1.41 in the scaling 
form. Plots with T =  1.40 and T =  1.44 clearly deviate from scaling. The 
plot with T =  1.42 gives roughly the same scaling quality as Fig. 7. 

The asymptot ic  scaling behaviour  is borne out, 

x( Tc, L, M) = MrlV• ~( LV• (13) 

The scaling function for S --> 0 is ~(S) --* S yiv' and for large S, ~(S) --> const. 
The data are in full accord with expectations. A least-squares fit to the 
asymptot ic  slope gives y/v• = 2.03 _+ 0.03. 

Figure 8 is the scaling plot for the fourth-order  cumulant ,  

g( Tc, L, M) = ~( L VII~HIM) (14) 

Large finite-size corrections are found here. This is also reflected in the 
intersection points (Table II). Using data at T =  1.40 produces slightly 
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Scaling plot of the susceptibility at the critical point, T,. = 1.41. The symbols are the 
same as in Fig. 6. 
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Fig. 8. 
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Scaling plot of the fourth-order cumulant at the critical point. The symbols are the 
same as in Fig. 6. 

better data collapsing. This trend is the opposite of the susceptibility data. 
In any case, T =  1.39 and 1.42 are the temperatures definitely away from 
To. Equation (14) can in principle be used to determine v• Due to the 
poor quality of the data, this is not possible for the model. 

The higher order moments (X and g) of the order parameter have 
larger statistical errors than the order parameter itself. It appears that the 
corrections to scaling are also large for the higher order moments. Thus, we 
trust more the scaling of the order parameter. These scaling plots are the 
first successful application of anisotropic scaling theory to driven diffusive 
systems. They are good evidence that at least the exponent ratios 
fllv• 71v• and VtllV.a are in agreement with the field-theoretic values. 

5. A N I S O T R O P I C  S C A L I N G  A W A Y  F R O M  C R I T I C A L  
T E M  P E I ~ A T U R E  

Figure 9 is a plot of the order parameter ~ for systems with M = 64 
and L=4-2048 .  One of the interesting features is that as the system 
becomes more elongated, it becomes more ordered. This, of course, is con- 
sistent with the value of To(L, M) in Table I. At low temperatures, because 
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Fig. 9. Order parameter for system size M = 64 and various L from 4 to 2048. 

of the existence of interfaces, a 1/M size dependence is expected, and at 
higher temperatures we have ~ oc (LM)  -w'. Near the critical region, we 
expect 

~( T, L, M)  = L p/''tt ~(  L 1/,,li( T -  Tc)/T~., S) (15) 

Leung ~8"9~ proposed a stronger scaling form when S---,0. Figure 10 is a 
scaling plot of the order parameter for S =  32~/3/16 with Tc = 1.408, assum- 
ing the field-theoretic exponents/~ = 1/2, Vz = 1/2, and vii = 3/2. The scaling 
plot is quite sensitive to the choice of Tc and 1.408 is optimal to this set 
of data. Clear deviations from scaling are seen if 1.404 or 1.411 is used. The 
T >  T,. branch (lower part) obeys scaling very well. The asymptotic slope 
for large scaling variable is consistent with -1 /2 .  For the T <  T,. branch 
(upper part), deviation from scaling is large. We should not simply con- 
clude that the data do not scale for T <  T c since the scaling is valid only 
for small I T - T , .  I/T,. and large L. If we accept that the scaling region for 
T <  Tc is rather narrow, then the scaling plot is not so bad. The asymptotic 
slope in a properly chosen interval is consistent with fl = 1/2. In any case, 
the size effect is complicated below T~. A direct, unambiguous demonstra- 
tion of the exponent fl = 1/2 is still lacking. It is also not known how much 
of this can be attributed to possible logarithmic corrections to scaling. 
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Comparing with Leung's data, ~s'9~ we feel that his conclusion on data 
collapse is somewhat too optimistic. 

Our  order parameter data can be compatible with the exponent 
f l =  1/2, but only in a rather narrow critical region of  t i T = 0 . 0 5  (see Fig. 
11 ). The data can be fitted to a power fl ~ 0.3 in a large temperature region 
( t iT=0.3) .  This is also roughly the value found in previous work on a 
square geometry. ~7'1~ However, if f l~0 .3 ,  then we need a critical tem- 
perature ( T =  1.385) which is too low. Fitting the magnetization data to a 
power law can be unreliable, because the assumption on critical region or 
T c has to be made. ~j61 

The difficulties encountered at low temperatures may be due to uncon- 
trolled finite-size effects or narrow scaling region, or even the use of  
anisotropic scaling theory, or the set of  critical exponents. We also con- 
sidered the usual isotropic scaling [ Eq. (I 5) with S omitted ] using square 
systems with the critical temperature and exponents in ref. 11. The low- 
temperature branch scales to some extent. However, the high-temperature 
branch does not scale at all. 

10 . . . . . . . .  i . . . . . . . . . . . . . . . . .  & . . . . . .  

_ J  

i i i i i i i i i  . . . . . . . .  i . . . . . . . .  i . . . . . . .  

10 "1 10 o 101 102 
2/3 

L IT-Tcl/T ~ 

Fig. 10. Scaling plot of the order parameter away from the critical point. The system sizes 
[Monte Carlo steps] are 32 • 16 [7 x l0 s] (circles), 256 x 32 [ 1.3 x 108] (open squares), and 
2048 x 64 [4 x 10 7] (triangles). 
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Fig. l l .  Order parameter to some power, ~2 (circles) and ~u~o/3 (squares), versus tem- 
perature T. The system size is 1024 x 64. 
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Fig. 12. 

. . . . . .  , , |  . . . . . . . .  i . . . .  , , , , i  . . . . . . .  

10 "1 10 o 101 102 
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Scaling plot of the susceptibility X above the critical temperature. The system sizes 
are the same as in Fig 10. 
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Fig. 13. The inverse susceptibility (X')- ~ against temperature T. The system size is 512 x 64. 
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Fig. 14. Scaling plot of the susceptibility X below the critical temperature. The system sizes 
are the same as in Fig. 10. 
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Figure 12 is a scaling plot for the susceptibility Z above the critical 
temperature. Reasonable data collapse is obtained with the theoretical 
exponents. The result for Z' is similar, but with somewhat narrower scaling 
region. The asymptotic slope for large scaling variable L'-/3(T-Tc)/Tc is 
- y .  Least-squares fits to log Z' (or log Z) vs. l o g ( T -  To) for a number of 
system sizes are consistent with y = 1 within a few percent error. The expo- 
nent y -- 1 is also demonstrated by the plot (X') -~ vs. T in Fig. 13. In such 
a plot, we expect (Z')-~ oc T - T o .  The value of Tc estimated by linear 
extrapolation of the curve is in agreement with the results obtained by 
other methods. 

The same set of exponents gives poor scaling for Y below Tc (see 
Fig. 14). One can bring the data to a better scaling if a larger y value is 
used. The fitted exponent y' strongly depends on M, varying from 1.9 for 
a 1024x 32 system to 1.3 for a 1024x 128 system. This behaviour is not 
well understood. 

6. CONCLUSION 

Extensive computer simulation of the driven diffusive model has been 
performed. The data were analyzed by anisotropic finite-size scaling theory. 
Various forms of corrections to scaling are seen. The order parameter at T c 
(Fig. 6) appears to be clean, and has the best scaling property. Away from 
T c, the order parameter and susceptibility data below the critical tem- 
perature are somewhat difficult to interpret; the question remains open 
whether the scaling assumption holds below T c. Nevertheless, the data at 
and above the critical temperature conform to standard finite-size scaling 
and are consistent with the phenomenological finite-size scaling theory with 
the set of exponents derived from the field-theoretic model. 
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